skip to main content


Search for: All records

Creators/Authors contains: "Gao, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Particle migration dynamics in viscoelastic fluids in spiral channels have attracted interest in recent years due to potential applications in the 3D focusing and label-free sorting of particles and cells. Despite a number of recent studies, the underlying mechanism of Dean-coupled elasto-inertial migration in spiral microchannels is not fully understood. In this work, for the first time, we experimentally demonstrate the evolution of particle focusing behavior along a channel downstream length at a high blockage ratio. We found that flow rate, device curvature, and medium viscosity play important roles in particle lateral migration. Our results illustrate the full focusing pattern along the downstream channel length, with side-view imaging yielding observations on the vertical migration of focused streams. Ultimately, we anticipate that these results will offer a useful guide for elasto-inertial microfluidics device design to improve the efficiency of 3D focusing in cell sorting and cytometry applications. 
    more » « less
    Free, publicly-accessible full text available June 6, 2024
  2. This study presents the growth and characterization of an 8.1 μm-emitting, InGaAs/AlInAs/InP-based quantum cascade laser (QCL) formed on an InP-on-Si composite template by metalorganic chemical vapor deposition (MOCVD). First, for the composite-template formation, a GaAs buffer layer was grown by solid-source molecular-beam epitaxy on a commercial (001) GaP/Si substrate, thus forming a GaAs/GaP/Si template. Next, an InP metamorphic buffer layer (MBL) structure was grown atop the GaAs/GaP/Si template by MOCVD, followed by the MOCVD growth of the full QCL structure. The top-surface morphology of the GaAs/GaP/Si template before and after the InP MBL growth was assessed via atomic force microscopy, over a 100 μm2 area, and no antiphase domains were found. The average threading dislocation density (TDD) for the GaAs/GaP/Si template was found to be ∼1 × 109 cm−2, with a slightly lower defect density of ∼7.9 × 108 cm−2 after the InP MBL growth. The lasing performance of the QCL structure grown on Si was compared to that of its counterpart grown on InP native substrate and found to be quite similar. That is, the threshold-current density of the QCL on Si, for deep-etched ridge-guide devices with uncoated facets, is somewhat lower than that for its counterpart on native InP substrate, 1.50 vs 1.92 kA/cm2, while the maximum output power per facet is 1.64 vs 1.47 W. These results further demonstrate the resilience of QCLs to relatively high residual TDD values. 
    more » « less
    Free, publicly-accessible full text available July 17, 2024
  3. Room-temperature, pulsed-operation lasing of 8.5  μm-emitting InP-based quantum cascade lasers (QCLs), with low threshold-current density and watt-level output power, is demonstrated from structures grown on (001) GaAs substrates by metal-organic chemical vapor deposition. Prior to growing the laser structure, which contains a 35-stage In 0.53 Ga 0.47 As/In 0.52 Al 0.48 As lattice-matched active-core region, a ∼2  μm-thick nearly fully relaxed InP buffer with strained 1.6 nm-thick InAs quantum-dot-like dislocation-filter layers was grown. A smooth terminal buffer-layer surface, with roughness as low as 0.4 nm on a 10 × 10  μm 2 scale, was obtained, while the estimated threading-dislocation density was in the mid-range × 10 8  cm −2 . A series of measurements, on lasers grown on InP metamorphic buffer layers (MBLs) and on native InP substrates, were performed for understanding the impact of the buffer-layer's surface roughness, residual strain, and threading-dislocation density on unipolar devices such as QCLs. As-cleaved devices, grown on InP MBLs, were fabricated as 25  μm × 3 mm deep-etched ridge guides with lateral current injection. The results are pulsed maximum output power of 1.95 W/facet and a low threshold-current density of 1.86 kA/cm 2 at 293 K. These values are comparable to those obtained from devices grown on InP: 2.09 W/facet and 2.42 kA/cm 2 . This demonstrates the relative insensitivity of the device-performance metrics on high residual threading-dislocation density, and high-performance InP-based QCLs emitting near 8  μm can be achieved on lattice-mismatched substrates. 
    more » « less
  4. The South Atlantic Ocean is an important region for anthropogenic CO2 (Canth) uptake and storage in the world ocean, yet is less studied. Here, after an extensive sensitivity test and method comparison, we applied an extended multiple linear regression (eMLR) method with six characteristic water masses to estimate Canth change or increase (ΔCanth) between 1980s and 2010s in the South Atlantic Ocean using two meridional transects (A16S and A13.5) and one zonal transect (A10). Over a period of about 25 years, the basin-wide ΔCanth was 3.86±0.14 Pg C decade-1. The two basins flanking the Mid-Atlantic Ridge had different meridional patterns of ΔCanth, yielding an average depth‐integrated ΔCanth in the top 2000 m of 0.91±0.25 mol m-2 yr-1 along A16S on the west and 0.57±0.22 mol m-2 yr-1 along A13.5 on the east. The west-east basin ΔCanth contrasts were most prominent in the tropical region (0-20°S) in the Surface Water (SW), approximately from equator to 35°S in the Subantarctic Mode Water (SAMW), and all latitudes in the Antarctic Intermediate Water (AAIW). Less Canth in the eastern basin than the western basin was caused by weaker ventilation driven by SAMW and AAIW formation and subduction and stronger Antarctic Bottom Water (AABW) formation in the former than the latter. In addition to the spatial heterogeneity, Canth increase rates accelerated from the 1990s to the 2000s, consistent with the overall increase in air-sea CO2 exchange in the South Atlantic Ocean. 
    more » « less
  5. null (Ed.)
  6. Abstract

    We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (flash) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi, Hei/ii, Civ, and Niii/iv/vwith a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,Mu= −18.6 mag,Mg= −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGENand the radiation-hydrodynamics codeHERACLESsuggests dense, solar-metallicity CSM confined tor= (0.5–1) × 1015cm, and a progenitor mass-loss rate ofṀ=102Myr−1. For the assumed progenitor wind velocity ofvw= 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwindphase) during the last ∼3–6 yr before explosion.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  7. Free, publicly-accessible full text available July 1, 2025